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than the first row cobalt analogues. The difference in free energies 
of activation for ethyl migration in the Co complex 4 relative to 
the Rh analogue 8a of 8 kcal/mol corresponds to a rate difference 
of 105-106 at 25 0C. The difference in AG*R.mig and A(7*H-mig» 
AAC*, for the Rh systems is 10.3 kcal/mol, while this number 
is less for the cobalt systems, ca. 8-6 kcal/mol. This is consistent 
with the expectation that as the barriers to H and R migration 
decrease, the difference between them will decrease. The detailed 
comparisons that can now be made between the Rh and Co 
systems provide quantitative support for our earlier suggestion13" 
that barriers for alkyl migrations will be lower for cases in which 
the hydride analogues exist as bridged (agostic) isomers rather 
than as terminal hydrides. 
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Several recent reports have described solution-phase metallo­
organic procedures for the preparation of IH-V (AlnBv) and 
H-VI (A"BVI) semiconductors.1 Such studies are motivated by 
at least two goals: (1) to develop alternatives to chemical-vapor 
deposition with group V hydrides for semiconductor-film pro­
duction and (2) to provide syntheses of semiconductor clusters 
having sizes and properties intermediate between those of mo­
lecular compounds and nonmolecular solids. 

We describe a new strategy for the synthesis of phosphide 
semiconductors that is analogous to the sol-gel synthesis of oxides. 
The latter, a well-established metalloorganic technique, proceeds 
by hydrolysis of homoleptic alkoxide precursors and polycon-
densation of the resulting M-OH intermediates.2 Our strategy 
is based on the alcoholysis of homoleptic silylphosphido precursors, 
M[P(SiMe3)2]^, and polycondensation of the resulting M-PH2 
intermediates. We now report the synthesis of the title silyl­
phosphido precursors and the preparation of Cd3P2 by alcoholysis 
and polycondensation. We also describe the synthesis of the 
ternary compounds ZnGeP2 and CdGeP2 by a related condensation 
reaction. 

The precursors were prepared according to eq 1 and isolated 
as air-sensitive, sublimable, crystalline solids.3 The solid-state 

(1) (a) Steigerwald, M. L.; Sprinkle, C. R. J. Am. Chem. Soc. 1987, 109, 
7200. (b) Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; 
Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C; 
Brus, L. E. Ibid. 1988, UO, 3046. (c) Byrne, E. K.; Parkanyi, L.; Theopold, 
K. H. Science 1988, 241, 332. (d) Wells, R. L.; Pitt, C. G.; McPhail, A. T.; 
Purdy, A. P.; Shafieezad, S.; Hallock, R. B. Chem. Mater. 1989, /, 4. (e) 
Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. J. Chem. Soc., 
Chem. Commun. 1989, 359. (f) Stuczynski, S. M.; Brennan, J. G.; Steiger­
wald, M. L. Inorg. Chem. 1989, 28, 4431. 

(2) (a) Hubert-Pfalzgraf, L. G. New. J. Chem. 1987, H, 663. (b) Roy, 
R. Science 1987, 238, 1664. (c) Gesser, H. D.; Goswami, P. C. Chem. Rev. 
1989, 89, 765. 

(3) Satisfactory elemental analyses were obtained (C, H, Cd, Zn). 31P 
NMR (ppm, benzene-rf6): 1,-183.0 (brs), -237.3 (brs); 2,-180.1 (vbrs), 
-229.5 (v br s). Sublimation point [0C (yield), 10"* Torr]: 1, 140 (50%); 2, 
140 (75%). 

Figure 1. An ORTEP representation of (Zn[P(SiMe3)2][M-P(SiMe3)2])2 

(1); hydrogen atoms were omitted for clarity. Selected distances (A): 
Zn-P(I), 2.421 (1); Zn-P(2), 2.295 (1); Zn-P(IA), 2.419 (1); Zn-Zn-
(A), 3.401 (1). Selected angles (deg): P(l)-Zn-P(2), 124.1 (1); P-
(1 )-Zn-P( 1 A), 90.7 (1); P(2)-Zn-P( 1 A), 144.9 (1); Zn-P( 1 )-Zn(A), 
89.3 (1); Zn-P(2)-Si(3), 107.0 (1); Zn-P(2)-Si(4), 103.6 (4); Si(3)-P-
(2)-Si(4), 106.2(1). 

structure of |Zn[P(SiMe3)2][M-P(SiMe3)2])2 (1) is shown in Figure 
I;4 |Cd[P(SiMe3)2][M-P(SiMe3)2]}2 (2) is isomorphous. Com­
pounds 1 and 2 appear to be the first homoleptic phosphido 
complexes of zinc5 and cadmium6 and the first homoleptic P-
(SiMe3J2 complexes in general.7 

M [N(SiMe3);,] 2 + 2HP(SiMe3)2 — 
y2{M[P(SiMe3)2]2|2 + 2HN(SiMe3J2 (1) 
M = Zn (1), 87% 
M = Cd (2), 90% 

Solutions of 2 and methanol gave a light-yellow slurry (<2 min), 
which gradually darkened through orange and brown to black (ca. 
1.5 h).8 Amorphous Cd3P2

9 formed according to eq 2 and was 
collected as a very air sensitive, black powder. Coproducts 
Me3SiOMe and PH3 were observed by NMR spectroscopy; 
however, the putative intermediate Cd(PH2J2 was not detected, 
and the actual pathway may be more complex than eq 2 indicates. 
Polycrystalline Cd3P2 was obtained by heating the amorphous 
material to 600 0C.10 In related work, Theopold and co-workers 
previously described the synthesis of GaAs by alcoholysis of 
(j7'-C5Me5)2Ga[As(SiMe3)2];

1<: intermediates containing AsH2 or 
AsH ligands are conceivable. 

-4McOSiMe3 

y22 + 4MeOH • "Cd(PH2)2" — Jz3Cd3P2 +
 4/3PH3 

(2) 

In contrast to eq 2, the reaction of 1 and methanol gave zinc 
dimethoxide" by methanolysis of Zn-P rather than Si-P bonds; 
see eq 3. Both zinc and cadmium are more electropositive than 
silicon and should be susceptible to nucleophilic attack by 

(4) Crystal data for 1: C24H72Si8P4Zn2, M, = 840.2, triclinic, Pl, a = 
9.831 (2) A, * = 10.813 (2) A, c = 12.692 (3) A, a = 80.97 (3)°, 0 = 67.62 
(3)°, y = 80.20 (3)°, V= 1223.1 (4) A3, T = 295 K, Z = 1,A,,*= 1.141 
g cm"3, X(Cu Ka) = 1.541 78 A. Of the 3353 unique intensities measured, 
3065 with F0 > 6.0<r(Fo) yielded R(F) = 0.0741 and /?W(F) = 0.1102. 
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(7) Hey, E.; Hitchcock, P. B.; Lappert, M. F.; Rai, A. K. J. Organomet. 
Chem. 1987, 325, 1. 
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1987,97,441. 

(9) No diffraction intensities were observed by X-ray powder diffraction 
(XRD). Anal. Calcd for Cd3P2: C, 0; H, 0; Cd, 84.47; Si, 0. Found: C, 
0.69; H, 0.38; Cd, 81.76; Si, <0.1. 

(10) (a) The XRD pattern matched the simulated pattern.I0b Anal. 
Found: C, 0.00; H, 0.00; Cd, 83.06. (Cd was determined by EDTA titration; 
1-2% relative errors are typical of our procedure.) (b) Wyckoff, R. W. G. 
Crystal Structures, 2nd ed.; Wiley-Interscience: New York, 1964; Vol. 2, pp 
33-36. 
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methanol. However, the relative softness of cadmium(II) ap­
parently disfavors attack of the hard, methanol nucleophile at 
cadmium. Equations 2 and 3 together suggest that the alcoho-
lysis-and-polycondensation strategy may generally fail with pre­
cursors having hard, electropositive cations. 

V2I + 2MeOH — Zn(OMe)2 + 2HP(SiMe3)2 (3) 

Precursors 1 and 2 gave the ternary phosphides ZnGeP2 and 
CdGeP2 according to eq 4. Intermediates were precipitated from 
refluxing toluene solutions of 1 or 2 and Ge(OMe)4 that contained 
SiMe3 and OMe groups;12 these were substantially removed by 
heating the dry solids to 300-350 0C in vacuo. Conversion to 
polycrystalline ZnGeP2

13 and CdGeP2'
3 was achieved at tem­

peratures of 800 and 600 0C, respectively, which are 200 0C below 
the melting points of the compounds14 and are mild conditions.15 

However, the ZnGeP2 and CdGeP2 contained residual-carbon 
impurities of ca. 3% and 1%, respectively.13 Efforts to decrease 
carbon levels by optimizing precursors and processing conditions 
are in progress. 

-(4-^)MeOSiMe3 

y2|M[P(SiMe3)2]2|2 + Ge(OMe)4 — • 

[MGeP2(OMe)JSiMeJy —• MGeP2 + XMeOSiMe3 
M = Zn, x = 0.5 sohds,ate 

M = Cd, x = 0.3 
(4) 

The A"3B
V

2 and A"BIVCV
2 families have potential applications 

in photovoltaics (Zn3P2),
16 IR-transmitting ceramics (ZnGeP2),'

7 

nonlinear optics (ZnGeP2),
18 and variable-band-gap devices 

(ZnSnP2)." Photophysical studies describing the novel properties 
of colloidal Cd3P2 have recently appeared.20 By analogy to the 
sol-gel process for oxides, rational metallorganic syntheses may 
become useful for preparing phosphide particles, films, or mon­
oliths. 
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High oxidation state middle transition metal compounds are 
of considerable importance, especially for the first-row metals. 
These rare species provide a major source of metallooxidants. In 
the case of iron, highly oxidized complexes are significant as 
reactive intermediates in many biological and biomimetic redox 
processes.2 Despite this significance, high valent iron coordination 
chemistry is limited. Few stable, well-defined compounds of 
iron(IV) exist,3 and the V and VI oxidation states are established 
only for the tetraoxo polyanions.3 The coordination chemistry 
of high-valent middle and later first row transition metals can be 
expanded by the use of oxidation-resistant, strongly donating ligand 
complements.4 The donor capacity and resistance to oxidative 
destruction of tetradentate tetraanionic ligands has been refined4 

to give the innocent macrocyclic tetraamide, H4[I] (Scheme I). 
The resistance of the macrocycle to oxidative degradation and 
the strong donor capacity of the amido-A1 donors are central 
features of this system. The ability of amido-A' ligands to stabilize 
higher oxidation states was first demonstrated by Margerum and 
co-workers in extensive studies of copper and nickel chemistry,5 

studies that are a foundation of the current work. Here we report 
the initial results of a study of the iron chemistry of H4[I], 
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Technology. Current address: Department of Chemistry, Carnegie Mellon 
University. 
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